
~OURNAL~P~OM~UTATIONALPHYSICS 32, 325-344 (1979) 

Curvilinear Finite Difference Method 

for Three-Dimensional Potential Problems 

P. C. M. LAU 

Civil Engineering Department, The University of Western Australia, Nedlands, Australia 

Received February 27, 1978; revised November 9, 1978 

A numerical solution method for the three dimensional potential problem is presented 
using finite difference expressions based on curvilinear coordinates and a numerical equation 
transformation. The computing algorithm is readily programmable. The curvilinear mesh 
is flexible in discretising the regions near a boundary of general shape. Examples of applica- 
tions indicate that an irregular mesh can be used and a curved surface requires no special 
computational treatment. 

INTRODUCTION 

Many previous finite difference solutions of three dimensional potential problems 
use a rectangular mesh to discretise the solid. The curved surface is approximated 
by a planar surface. The normal derivative boundary condition prescribed on the 
curved surface needs special computational treatment to clarify the ambiguity at 
a sharp corner. The advantages of relaxing these restrictions are obvious. The problems 
of discretisation on a curved boundary, the normal derivative boundary condition 
and the use of a non-rectangular mesh for two dimensional problems are tackled by 
the Curvilinear Finite Difference Method (l,* 2). In this paper the method is extended 
to the three dimensional case. The Curvilinear Finite Difference Method is based 
on the equation transformation technique. The governing partial differential equation 
of the field function is first transformed into local curvilinear 01, /3 and 7) coordinates 
before the difference expressions for the partial derivatives are substituted to obtain 
a system of simultaneous linear equations of the discrete field function. A twenty-seven 
node curvilinear coordinate system is required to establish the equations for the trans- 
formation. The remaining computational procedures are similar to the standard 
finite difference method. Examples of applications include steady temperature distri- 
bution problems in a solid cube and a wedge cut off from a cylinder and the potential 
problem of a hollow sphere. 

1 The terms A, and A4 of eqt. 8 in ref. 1 should read As = (T=a)% + (T,a:)a and A4 = 2(T,*Tzfl + 
Tv”r,s). 
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BASIC RELATIONSHIPS 

To illustrate how the curvilinear difference technique can be applied to the three 
dimensional potential problem, consider the potential function # on a three dimen- 
sional region I/ (Fig. 1) which is required to satisfy the following governing equations: 

ay a2* ay ax2 + ay2 + a22 = 0 in region V 

FIG. 1. 3-D solid. 

subject to the boundary conditions 

I/ = $ on boundary S, and g = 4 on boundary S, 

where S = S, + S, and S denotes the total boundary. 

DEFINITIONS OF LOCAL CURVILINEAR 01, ,f3, 71 COORDINATES 

(1) 

(2) 

Consider the three dimensional region formed by 27 nodes shown in Fig. 2. The 
mesh is defined by the curvilinear coordinates 01 = (0, -kl), /3 = (0, Sl) and 
7 = (0, fl). 
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k Surface 3 

Surface 1 at Surface 2 at Surface 3 at 

‘I-0 q--l ,= 1 

FIG. 2. 3-D curvilinear mesh of 27 node system. 

Within this region, the function u is approximated as 

where a,, a2 ,..., az7 are constant coefficients. Equation (3) is more conveniently 
expressed as 

u = pu2, (4) 

where 4 is the 27 x 1 matrix of the interpolation functions given in Appendix 1 
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and U, are the 27 nodal values of the unknown in the order u, , us, u, ,..., us7 i.e. 

Similarly, the coordinates of the 27 nodes can be related to the x, y, z coordinate 
system using the same interpolation, i.e. 

x = +=x, 

Y = 4’YD (6) 
z = tj=z, 

where X, , Y, and Z, are the x, y and z coordinates of the 27 nodes given as: 

XDT = {x1x2x3 -*- x2,) 

y,= = lYlY2Y3 -** Y2J 
z,= = {z,z2z, *a* 227}. 

(7) 

TRANSFORMATION OF GOVERNING EQUATION INTO CURVILINEAR (~,/3, r] COORDINATES 

Before the governing partial differential equation is transformed into the local 
01, /I, r) coordinate system, consider the transformation of au/ax, &lay and au/az 
where x, y and z refer to the global coordinate system. The counterpart of au/ax, 
au/ay and au/& in the 01, ,fI, 7 coordinate system are au/&, au/a/3 and au/a7 respec- 
tively. Using the chain rule of the partial differentiation, the relationships between 
these partial derivatives can be written as 

The above equations can be expressed in indicial notation for convenience as 

U,, = T,"U,, (9) 

where subscript i and m refer to the global x, y, z and local ~1, /3, q coordinate systems 
respectively, the comma in equation (9) denotes partial differentiation. Similarly the 
second order partial derivatives a2/ax2, a2/ay2 and a2/az2 can be obtained by operating 
on equation (9) as follows: 
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Let 
v= u,i 

V3.j = (U,,)j = U,ij 

329 

(10) 

Using equation (9), equation (10) can be written as 

The governing equation of the potential problem given in equation (1) can now be 
transformed into the local cy, /3,~ coordinate system as 

+ (TznTzm + T,"T," + T,"T,") &nn 

z-z 0 (12) 

where symmation takes place for the repeated indices. Expanding the right hand side 
of equation (12) one obtains 

-4 = (T,")2 + (Tu")2 + (Ts")2 

A, = (T,9" + (TvB)2 + (TzB)" 

A, = (Tz"j2 + (Ty")2 + (T,n)2 

A, = 2T,"TzB + 2T,"T,B f 2T,"T," 

A, = 2T,BTz- + 2T,BT," + 2T,BT," 

A, = 2T,"T,= + 2T,"T,a + 2T,"T,". 

(14) 
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COMPUTATION OF THE COEFFICIENTS Tin AND T& 

The coefficients Tin of node 1 (figure 2) of a 27 node coordinate system can be 
obtained from the matrix inversion of the Jacobian matrix J as follows: 

J= 

ax 2y az __- 
aa: sol aa: 
ax 2~ az ____ 
aP 2P 1 ?P . 
ax ay az _-- 
817 a7 arl 1 

Using Equation (4) 

and 

J-1 = 

aa aP &I -_ 
ax 2~ ax 
aa ag arl 

---I 

ay ay ay . 
2a @ 3 -__ 
2~ az 2~ 

Hence TX& TTS TtZn [ 1 Turn 7-l/* TVV z J-1. TZU Tz6 Tzn 

Carrying out the matrix inversion operation, one obtains 

(1% 

(16) 

(17) 

(18) 
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(19) 

and G is the determinant of the Jacobian matrix J of equation (15). 
The second transformation coefficients T&, can be obtained by direct partial 

differentiating of the coefficients Tin of equation (19). Some examples are 

a =[ ( ay zz __- 
aor ag a7 

-$~).G-(~~-~~)~]/G2 

m 

The above expressions indicate that the second order partial derivatives of the coordi- 
nates x, y and z are required. These derivatives can be obtained from equation (4). 

ALGEBRAIC EXPRESSIONS OF I&~ AND t),,,, 

The local partial derivatives a#/&, a#/@, a#/aq etc. at the centre node 1 can be 
obtained by substituting CC = p = 7 = 0 into equations (9) and (11). These algebraic 
expressions are given as 
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Similarly, the algebraic expressions of the partial derivatives of x, y and z with 
respect to 01, /3 and 7 defined in equation (16) can be obtained from equation (21) 
after replacing # by the appropriate x, y or z. 

TRANSFORMED GOVERNING EQUATION 

The algebraic expression of equation (1) can now be obtained by substituting 
equations (14), (19) and (20) into (13) giving 

RI#I + R2v52 -*- R,,y5,, = 0 (22) 

where the non-zero coefficients Rd are 

R, = --264, + A, + A,) 
Rz = A, + A,/2 
R, = A, + A,/2 

R, = A, + 42 
R, = A, - A,/2 
R, = A6 - A,/2 
R, = -A,/4 
R, = A,/4 
R, = -A,/4 
R, = A,/4 

R,, = A, - A,/2 
R,, = -A,/4 
R,, = -A,/4 

RI, = A,/4 
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RI, = 44 
Ru = A, -I- A,/2 

&to = A,/4 
&I = 444 
R,, = -A,/4 
R,, = -A,/4 

The coefficients R,, , RI, , R,, , R,, , Rz4 , R,, , R, and R,, are all equal to zero indi- 
cating that only 19 unknowns # are involved in equation 22. The 27 node system can 
be reduced to a 19 node system without losing any terms of the approximate u function 
in equation 3 as the computation of Tin and T&, does not require the x, y and z 
coordinates of nodes 15, 16, 17, 18, 24, 25, 26 and 27. 

BOUNDARY CONDITIONS 

On the boundary S, , where 4 = I,& the discrete value of & at the node i is 4. 
On the boundary S, where the normal derivative is zero, the discrete value I,& 
at the node is to be computed. The equation (26) must be applied to this node i. 
The local region overlaps both inside and outside part of region V and generates 
outside node j. 

The normal derivative condition is used to compute & at node j as in the case of 
the standard finite difference method. The present curvilinear finite difference can 
easily satisfy this condition on the curved boundary. This is done by choosing any 
one of the 01, /I, r] lines to coincide with the normal t (figure 3). The outside node j 
is related to the inside node k as & = tile + 4 * a. The coordinates xj , yj and zi 
of node j are required for the setting up of the local curvilinear coordinate system 
but #j is not included in the system of simultaneous linear equations. 

FIG. 3. Normal derivative boundary condition on curved surface. 
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SOLUTION OF THE GLOBAL EQUATION OF DISCRETE z,$ 

Applying equation (26) to every one of the interior nodes and the nodes on the 
boundary Sz of the region, a system of simultaneous linear equations governing the 
discrete values of the potential function # can be obtained. The solution of this 
equation can be by either direct or iterative solution methods. The direct method 
usually employs the more general Gaussian elimination method taking advantage 
of the banded form of the coefficients of the unsymmetric matrix. The iterative 
methods such as Gauss-Seidel or Successive Over Relaxation methods require fewer 
arithmetic operations and less computer storage as there are at most 19 non-zero 
coefficients in any row of the matrix. 

3-D solid 
F 

FIG. 4. Typical 3-D curvilinear mesh. 
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COMPUTATIONAL PROCEDURE 

The computational procedure of the curvilinear finite difference method is similar 
to the standard finite difference method except that it requires the additional infor- 
mation of the nodal x, y and z coordinates and the equation transformation. The 
steps are summarised as: 

(a) Discretise the region V into curvilinear meshes (see figure 4). 
(b) Assign nodal numbers and x, y, z coordinates to the nodes and form local 

cy, /3, 7 coordinate system. 
(c) Set up the global equation of the discrete #i by applying equation (26) 

to all interior nodes in region V and the nodes on the boundary S, . 
(d) Inject the boundary condition of the boundary node (i.e. Q/J{ = 0 or 

#j = & + 4 * a by modifying the equations obtained in step (c). 
(e) Solve the modified equations in step (d) to obtain the discrete potentials & . 

EXAMPLES OF APPLICATIONS 

Regular and irregular meshes, particularly a graded mesh, are used to analyse 
three field problems by the Curvilinear Finite Difference Method. The numerical 
accuracy of the method is tested by varying the size of the mesh and increasing the 

,T- 1000~ 

FIG. 5. Mesh discretisation of a unit cube (4 of solid shown). 
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number of the discrete field unknowns. The computer program written for the 3-D 
analysis is modified from the 2-D computer program FIELD reported in reference [2]. 
The minor changes are the input data information and the program SUBROUTINE 
TMAT and COEF. The data information for the present analysis requires the coor- 
dinates x, y and z of the nodes, the nodal numbers of the nodes forming the curvilinear 
meshes and the boundary conditions. All the data are generated by a separate program. 
The data generation is possible as the curvilinear mesh of different sizes follow the 
same pattern. The system of simultaneous linear equations is solved by an iterative 
Gauss-Seidel method to reduce computer storage requirement. 

TABLE 1 

Comparison of Temperature Distribution of Unit Cube (Figure 5) 

Mesh grade 
(no. of mesh, 

no. of 
unknowns) 1 2 

Temperatures at nodes 

3 4 5 6 7 8 9 Remarks 

coarse 
1X1X2 
mesh 
1 unknown 

- 

medium 
2x2x4 
12 unknowns 

435 

fine 
4X4X8 
70 unknowns 

452 

454 

458 

- 458 

- 

361 

370 

371 

373 

- 

303 

308 

307 

307 

- 

167 - - - 

163 127 98 54 

169 127 96 57 

167 123 92 52 

167 123 

167 - 

91 

- 

51 

51 

- 

40 

31 

37 

37 

- 

- 

30 

23 

27 

26 

- 

C.F.D. 
regular 
grid 

C.F.D. 
regular 
grid 

C.F.D. 
regular 
grid 

Finite 
Element 
method 
ref 3,4 

Finite 
Difference 
Method 
ref 3.4 

Analytical 
solution by 
series 
solution 
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TEMPERATURE DISTRIBUTION OF UNIT CUBE 

The steady state temperature distribution of a unit cube (figure 5) subject to zero 
temperature on five faces and a constant temperature of 1000°C on the top face is 
investigated by the C.F.D. method using various mesh discretisations. The comparison 
of the present results with the finite element and the standard finite difference results 
are summarised in the table 1. The effect of the irregular mesh on the numerical results, 
particularly the graded mesh discretisation in which more meshes are used for the 

TABLE 2 

Comparison of Temperature 7’ and ar/az at Nodes (Figure 5) 

Mesh grade 
(no. of mesh, 

no. of unknowns) 

medium 
2x2x4mesh 
12 unknowns 

medium 
2 x 2 x 4mesh 
12 unknowns 

fine 
4 x 4 x 8 mesh 
70 unknowns 

very fine 
5 x 5 x 10 mesh 
135 unknowns 

Vertical 
distance, 

Z 

- 
0.85 

0.65 

0.375 

0.8 

0.6 

0.3 

0.9 

0.8 

0.125 

0.9 

0.8 

0.6 

Temperature 
at nodes 

T aiyaz 

606 2079 
650” 2127’ 
272 1099 
311” 1240” 
84 419 
95” 444” 

512 1937 
548” 1919” 
225 896 
254” 1047” 
645 375 
709” 337” 

750 2330 
760’ 2290” 
534 1929 
548” 1919” 
29 182 
22” 194” 

755 2285 
760” 2290” 
543 1897 
548O 1919” 
254 1038 
254” 1047” 

- 

Relative 
dimension of 
vertical mesh 

0.15/0.2/0.275/ 
0.375 irregular 

0.2/0.2/0.3/0.3 
irregular 

0.1/0.1/0.1/ 
0.1625/.1625/ 
0.125/0.125/0.125 
irreguIar 

vertical mesh at 
0.1 unit distance 
apart 

a Meshes are kept uniform in X, y plane but varies in the z direction. Analytical results are marked 
with asterisks. 



338 P. C. M. LAU 

FIG. 6. Hollow sphere. 

region where rapid changes of the temperature are expected, are also studied. The 
comparison of the results obtained from the C.F.D. method and the analytical method 
are shown in table 2. In all the analyses the computed temperature and the rate of 
change of the temperature are found in good agreement with the analytical solution. 

ELECTROSTATIC POTENTIAL OF A HOLLOW SPHERE 

The outer sphere (radius = 1) is held at constant potential V,, and the inner sphere 
(radius = 0.5) is held at zero potential (figure 6). The explicit finite difference 
expressions of coefficients can be obtained after transforming the governing potential 
equation 1 into a spherical coordinate system. The table 3 summarises the comparison 
of the finite difference coefficients of the C.F.D. and the exact methods. Various mesh 
sizes are studied and both methods are found in good agreement except the very 
coarse meshes (Figure 7). The potentials of the sphere shown in table 4 are very close 
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TABLE 3 

Comparison of the Finite Difference Coefficients & Computed by C.F.D. and Exact Methods 

Finite Different meshes (figure 6) 
difference 

coefficients Ar = .1 Ar = .l Ar = .l Ar = .l Au = .5 Ar = .5 Ar = .5 
Ri of eq. (26) A0 = 5” A0 = IO” AB = 50” A@= 100” A0 = 10” Atl = 50” A0 = loo” 

by C.F.D. A$ = 5” A+ = 10” A$ = 50” 04 = 100” A+ = 10” A# = 50” A+ z 100” 
- - 

RI -726.6 - 332.7 -206.g -204.1 - 140.7 -14.8 -12.1 
-725.3” -331.1” -20X3= -201.3@ -139.3” -13.3” -9.3” 

RP,% 110.0 110.0 110.0 110.0 6.00 6.00 6.0 
RIO > RI9 110.0” 110.0” 110.0” 110.0” 6.00” 6.00” 6.0” 

& 131.7 33.2 1.7 1.0 33.2 1.7 1.0 
131.3” 32.8” 1.3” 0.3” 32.8” 1.3” 0.3” 

RI 89.9 89.9 89.9 89.9 1.9 1.9 1.9 
90.0” 90.0” 90.0” 90.0” 2.0” 2.04 2.0” 

@ (a) The coordinates x, y, z for computing the coefficients Ri are derived from the r, 0 and $ of the 
spherical coordinates. (b) The remaining coefficients Ri not shown are all equal to zero. 

FIG. 7. Mesh generated by spherical coordinates for comparison of exact and numerical trans- 
formations. 
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TABLE 4 

Comparison of Electrostatic Potentials of a Hollow Space Computed by C.F.D. and Exact Methods 

Mesh 

no. of unknowns node 

coarse 
21 unknowns A 

B 

C 

medium 
39 unknowns A 

B 

C 

medium 
49 unknowns A 

B 

C 

coordinates electrostatic 
potential V 

of node 
of node 

x 
Y 

z 

.315 

.315 

.4419 

0 
0 
.875 

.4375 

.4375 

.6187 

.2706 

.4687 

.3125 

0 
0 
.875 

.3789 

.6562 

.4375 

.2813 

.2812 

.3977 

0 
0 
.9325 

.4663 

.4662 

.6594 

V(x v,) 

.428 

.400” 

.873 
,857” 

872 
.857” 

.411 

.400” 

.863 
857” 

.864 

.857” 

.241 
,222” 

.936 

.928” 

.936 

.928” 

- 
1.962 

_- __- 
regular mesh 

- 

1.225 

- 

.866 

- 

1.356 regular mesh 

- 

1.287 

- 

.643 

- 

2.419 regular mesh 

- 

1.021 

- 

.722 

- 

Remarks 

Table continued 
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TABLE IV (continued) 

Comparison of Electrostatic Potentials of a Hollow Space Computed by C.F.D. and Exact Methods 

Mesh 

no. of unknowns 

coordinates electrostatic 
of node potential V 

X of node 
Y 

node z V(x vo) Remarks 

fine 
91 unknowns A 

B 

C 

fine 
91 unknowns A 

B 

C 

.2436 

.4219 

.2813 

0 
0 
.9375 

.4059 

.7031 

.4688 

.2436 

.4219 

.2813 

0 
0 
.95 

.4114 

.7125 

.4750 

.230 

.222” 

,937 
.933” 

.937 

.933n 

.232 

.222= 

.951 

.947= 

.950 

.947” 

1.646 regular mesh 

- 

1.091 

- 

.546 

- 

1.659 irregular mesh 

- 

1.043 

- 

,521 

- 

OPotential V calculated by exact method. 

to the analytical solution. This application also shows that the curved surface of the 
sphere is well approximated by the curvilinear coordinates CX, /3 and q without intro- 
ducing sharp corners into the discretisation as in the case of using the 4 nodes or 8 
nodes solid finite element (3). 

Temperature distribution of a wedge 

The figure 8 shows a wedge cut off from a right cylinder. The two vertical and the 
bottom faces are held at zero temperature. The top face is held at 1000° temperature. 
The curved face is insulated and a zero normal derivative is prescribed. Three mesh 
discretisations are used to analyse the temperature distribution. The results of 
temperature and aT/az are shown in table 5. This example shows that the normal 
derivative on a curved surface can be accurately prescribed. The degeneration of the 
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). known T 

. unknown T 

FIG. 8. Wedge cut off from right cylinder. 

TABLE 5 

Temperature T and aT/az of a Wedge (Figure 8) 

Mesh 
(no. of meshes, 

no. of unknowns) 

Temperature T aT;'az at 
at node node 

1 2 3 1 2 3 remarks 

medium 
2 x 4 x 8 meshes 
56 unknowns 

8.41 41.2 7.91 68.78 351.3 89.31 
regular mesh 
vertical 
division: 
4 x 0.25 = 1 

fine 
2 x 8 x 8 meshes 
112 unknowns 

tie 
2 x 8 x 8meshes 
112 unknowns 

7.54 43.9 8.07 63.19 337.3 90.00 

7.37 42.9 7.86 61.76 357.3 97.15 

regular 
mesh 
vertical 
division: 
8 x 0.125 = 1 

graded mesh 
vertical 
division: 
4 x 0.165 + 
2 x 0.15 + 2 x 0.1 
= 1 
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mesh from 27 nodes to 21 nodes occurs near the corner region where the two vertical 
planar surfaces meet. 

DISCUSSION AND CONCLUSION 

The proposed Curvilinear Finite Difference method attempts to put the finite 
difference ideas into a more programmable and flexible structure so that the geometric 
generality of the finite element method is approached. The examples of applications 
illustrate that (a) a curved surface presents no special problem to the mesh discreti- 
sation, (b) the normal derivative on a curved surface is approximated by a central 
difference expression without any equation transformation and (c) an irregular mesh 
can be applied to calculate the discrete potential at a specific point with reduction of 
the computational effort. Table 2 indicates that the temperature at the point with the 
coordinates (x = y = 0, and z = 0.8) can be computed with sufficient accuracy 
by using fewer unknown discrete potentials. The temperature T obtained by the 
irregular meshes with 12 and 7” unknowns are 512” and 534” respectively. These 
results compare very favourably with the regular mesh with 135 unknowns case 
in which T is 543”. The analytical solution for T is 548“. 

Unlike the previous Chu’s machine transformation (6) using regular hexagonal 
mesh, the interpolation function approach of the present C.F.D. is also applicable 
to non-orthogonal curvilinear coordinate system and is flexible to generate a mesh 
to suit the geometry of the solid particularly the region near the boundary. 

The C.F.D. method requires no numerical integration nor the subsequent element 
assembling procedure of the variational based finite element (3) and the more recent 
integral equation based methods (5). A direct comparison of the computer time of 
different methods using the same machine is beyond the scope of this paper. However, 
the author believes that the Curvilinear Finite Difference method requires less com- 
putation effort than the finite element method (3) with explicit and symmetric element 
matrix. A summary of the comparison of the arithmetic operations of both methods 
to set up 27 equations are summarised as follows: 

Total number of Total number of 
arithmetic arithmetic 
t+ or -1 (x or G) 
operations operations 

Finite Element Method (Based on 
assembling 8 brick elements. Each 
element is obtained from assembling 
five tetrahedrons. Only the upper 
triangle of the matrix is formed, 
ref. [3]) 

18400 28480 

Present C.F.D. method 10692 9360 
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The C.F.D. method also requires less computer storage than the F.E method as 
it only keeps the non-zero coefficients and is independent of the band width if an 
iterative simultaneous linear equation solution method is used. The computing time 
of the example on a C.D.C. CYBER 72 machine ranges from 5 to 30 seconds 
depending the number of discrete potentials. 

where 

APPENDIX 1 

Interpolation functions 4 for u approximation (equation (4)) are given as 

i2; = [Cl I; 177 $1’ - %I 1;s 7”) 41’ i(r lk T”) ATI 
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